Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612245

RESUMO

Chronic heat stress can have detrimental effects on the survival of fish. This study aimed to investigate the impact of prolonged high temperatures on the growth, antioxidant capacity, apoptosis, and transcriptome analysis of Hong Kong catfish (Clarias fuscus). By analyzing the morphological statistics of C. fuscus subjected to chronic high-temperature stress for 30, 60, and 90 days, it was observed that the growth of C. fuscus was inhibited compared to the control group. The experimental group showed a significant decrease in body weight and body length compared to the control group after 60 and 90 days of high-temperature stress (p < 0.05, p < 0.01). A biochemical analysis revealed significant alterations in the activities of three antioxidant enzymes superoxide dismutase activity (SOD); catalase activity (CAT); glutathione peroxidase activity (GPx), the malondialdehyde content (MDA), and the concentrations of serum alkaline phosphatase (ALP); Aspartate aminotransferase (AST); and alanine transaminase (ALT) in the liver. TUNEL staining indicated stronger apoptotic signals in the high-temperature-stress group compared to the control group, suggesting that chronic high-temperature-induced oxidative stress, leading to liver tissue injury and apoptosis. Transcriptome analysis identified a total of 1330 DEGs, with 835 genes being upregulated and 495 genes being downregulated compared to the control group. These genes may be associated with oxidative stress, apoptosis, and immune response. The findings elucidate the growth changes in C. fuscus under chronic high temperature and provide insights into the underlying response mechanisms to a high-temperature environment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38246110

RESUMO

Cherax quadricarinatus exhibit sexual dimorphism, with males outpacing females in size specification and growth rate. However, there is limited understanding of the molecular mechanisms underlying sex determination and sex differentiation in crustaceans. To study the differences between intersex individuals and normal individuals, this study counted the proportion of intersex individuals in the natural population, collected the proportion of 7 different phenotypes in 200 intersex individuals, and observed the differences in tissue sections. RNA-seq was used to study the different changes in the transcriptome of normal and intersex gonads. The results showed that: the percentage of intersex in the natural population was 1.5 %, and the percentage of different types of intersex ranged from 0.5 % to 22.5 %; the sections revealed that the development of normal ovaries was stagnant at the primary oocyte stage when intersex individuals with ovaries were present; We screened for pathways and genes that may be associated with gonadal development and sex, including ovarian steroid synthesis, estrogen signaling pathway, oocyte meiosis, progesterone-mediated oocyte maturation, etc. Relevant genes including tra2a, dmrta2, ccnb2, foxl2, and smad4. This study provides an important molecular basis for sex determination, sex-controlled breeding, and unisex breeding in red crayfish.


Assuntos
Astacoidea , Transcriptoma , Humanos , Masculino , Feminino , Animais , Astacoidea/genética , Gônadas/metabolismo , Ovário , Fenótipo
3.
Animals (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174540

RESUMO

Spotted scat (Scatophagus argus) can tolerate a wide range of salinity fluctuations. It is a good model for studying environmental salinity adaptation. Lipid metabolism plays an important role in salinity adaptation in fish. To elucidate the mechanism of lipid metabolism in the osmoregulation, the liver transcriptome was analyzed after 22 d culture with a salinity of 5 ppt (Low-salinity group: LS), 25 ppt (Control group: Ctrl), and 35 ppt (High-salinity group: HS) water by using RNA sequencing (RNA-seq) in spotted scat. RNA-seq analysis showed that 1276 and 2768 differentially expressed genes (DEGs) were identified in the LS vs. Ctrl and HS vs. Ctrl, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the pathways of steroid hormone biosynthesis, steroid biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, and lipid metabolism were significantly enriched in the LS vs. Ctrl. The genes of steroid biosynthesis (sqle, dhcr7, and cyp51a1), steroid hormone biosynthesis (ugt2a1, ugt2a2, ugt2b20, and ugt2b31), and glycerophospholipid metabolism (cept1, pla2g4a, and ptdss2) were significantly down-regulated in the LS vs. Ctrl. The pathways related to lipid metabolisms, such as fatty acid metabolism, fatty acid biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine signaling pathway, fatty acid degradation, and unsaturated fatty acid biosynthesis, were significantly enriched in the HS vs. Ctrl. The genes of unsaturated fatty acid biosynthesis (scd1, hacd3, fads2, pecr, and elovl1) and adipocytokine signaling pathway (g6pc1, socs1, socs3, adipor2, pck1, and pparα) were significantly up-regulated in the HS vs. Ctrl. These results suggest that the difference in liver lipid metabolism is important to adapt to low- and high-salinity stress in spotted scat, which clarifies the molecular regulatory mechanisms of salinity adaptation in euryhaline fish.

4.
BMC Genomics ; 24(1): 291, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254055

RESUMO

BACKGROUND: Hong Kong catfish (Clarias fuscus) is an ecologically and economically important species that is widely distributed in freshwater regions of southern China. Hong Kong catfish has significant sexual growth dimorphism. The genome assembly of the Hong Kong catfish would facilitate study of the sex determination and evolution mechanism of the species. RESULTS: The first high-quality chromosome-level genome of the Hong Kong catfish was constructed. The total genome was 933.4 Mb, with 416 contigs and a contig N50 length of 8.52 Mb. Using high-throughput chromosome conformation capture (Hi-C) data, the genome assembly was divided into 28 chromosomes with a scaffold N50 length of 36.68 Mb. A total of 23,345 protein-coding genes were predicted in the genome, and 94.28% of the genes were functionally annotated in public databases. Phylogenetic analysis indicated that C. fuscus and Clarias magur diverged approximately 63.7 million years ago. The comparative genome results showed that a total of 60 unique, 353 expanded and 851 contracted gene families were identified in Hong Kong catfish. A sex-linked quantitative trait locus identified in a previous study was located in a sex-determining region of 30.26 Mb (0.02 to 30.28 Mb) on chromosome 13 (Chr13), the predicted Y chromosome. This QTL region contained 785 genes, of which 18 were identified as sex-related genes. CONCLUSIONS: This study is the first to report the chromosome-level genome assembly of Hong Kong catfish. The study provides an excellent genetic resource that will facilitate future studies of sex determination mechanisms and evolution in fish.


Assuntos
Peixes-Gato , Cromossomos , Animais , Filogenia , Hong Kong , Genoma , Peixes-Gato/genética , Cromossomo Y
5.
Animals (Basel) ; 13(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37048487

RESUMO

Olfactory receptor (OR) genes are essential in the specific recognition of diverse stimuli in fish. In this study, a total of 141 OR genes were identified in silver sillago (Sillago sihama), a marine fish sensitive to environmental stimuli, including 112 intact genes, 26 truncated genes, and three pseudogenes. A phylogenetic tree analysis elucidated that the OR genes of S. sihama were classified into six groups, of which ß, γ, δ, ε, and ζ groups belonged to type I, and the η group belonged to type II. The type I OR genes contained almost all conserved motifs (n = 62), while type II OR genes mainly retained conserved motifs 7(3), 1, 10, 4, and 2 (n = 39). OR genes were mainly distributed on LG1, LG9, LG11, and LG12. Of all OR genes, 36.23% (50 genes) showed significant expansion in S. sihama. Ka/Ks analysis demonstrated that 227 sites were under purifying selection, while 12 sites were under positive selection, including eight genes in the OR2A12 gene subfamily. Sixty-one genes (44.20%) displayed differential expression under hypoxic stress. The identified OR genes explored the mechanism of environmental stress and ecological adaptation of S. sihama, and provided valuable genomic resources for further research on the olfaction of teleosts.

6.
Animals (Basel) ; 13(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048508

RESUMO

Natural and synthetic astaxanthin can promote pigmentation in fish. In this study, the effects of dietary astaxanthin on growth and pigmentation were evaluated in leopard coralgrouper (Plectropomus leopardus). Fish were assigned to three groups: 0% astaxanthin (C), 0.02% natural astaxanthin (HP), and 0.02% synthetic astaxanthin (AS). Brightness (L*) was not influenced by astaxanthin. However, redness (a*) and yellowness (b*) were significantly higher for fish fed astaxanthin-containing diets than fish fed control diets and were significantly higher in the HP group than in the AS group. In a transcriptome analysis, 466, 33, and 32 differentially expressed genes (DEGs) were identified between C and HP, C and AS, and AS and HP, including various pigmentation-related genes. DEGs were enriched for carotenoid deposition and other pathways related to skin color. A metabolome analysis revealed 377, 249, and 179 differential metabolites (DMs) between C and HP, C and AS, and AS and HP, respectively. In conclusion, natural astaxanthin has a better coloration effect on P. leopardus, which is more suitable as a red colorant in aquaculture. These results improve our understanding of the effects of natural and synthetic astaxanthin on red color formation in fish.

7.
Sci Adv ; 8(51): eadc8786, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542716

RESUMO

The X and Y chromosomes of channel catfish have the same gene contents. Here, we report allelic hypermethylation of the X chromosome within the sex determination region (SDR). Accordingly, the X-borne hydin-1 gene was silenced, whereas the Y-borne hydin-1 gene was expressed, making monoallelic expression of hydin-1 responsible for sex determination, much like genomic imprinting. Treatment with a methylation inhibitor, 5-aza-dC, erased the epigenetic marks within the SDR and caused sex reversal of genetic females into phenotypic males. After the treatment, hydin-1 and six other genes related to cell cycle control and proliferative growth were up-regulated, while three genes related to female sex differentiation were down-regulated in genetic females, providing additional support for epigenetic sex determination in catfish. This mechanism of sex determination provides insights into the plasticity of genetic sex determination in lower vertebrates and its connection with temperature sex determination where DNA methylation is broadly involved.


Assuntos
Impressão Genômica , Ictaluridae , Masculino , Animais , Feminino , Ictaluridae/genética , Metilação de DNA , Cromossomo X , Vertebrados
8.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628283

RESUMO

Channel catfish has an XY sex determination system. However, the X and Y chromosomes harbor an identical gene content of 950 genes each. In this study, we conducted comparative analyses of methylome and transcriptome of genetic males and genetic females before gonadal differentiation to provide insights into the mechanisms of sex determination. Differentially methylated CpG sites (DMCs) were predominantly identified on the sex chromosome, most notably within the sex determination region (SDR), although the overall methylation profiles across the entire genome were similar between genetic males and females. The drastic differences in methylation were located within the SDR at nucleotide position 14.0-20.3 Mb of the sex chromosome, making this region an epigenetically marked locus within the sex determination region. Most of the differentially methylated CpG sites were hypermethylated in females and hypomethylated in males, suggesting potential involvement of methylation modification in sex determination in channel catfish. Along with the differential methylation in the SDR, a number of differentially expressed genes within the SDR were also identified between genetic males and females, making them potential candidate genes for sex determination and differentiation in channel catfish.


Assuntos
Ictaluridae , Animais , Feminino , Genoma , Masculino , Cromossomos Sexuais , Análise para Determinação do Sexo , Cromossomo Y
9.
Fish Shellfish Immunol ; 122: 38-47, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35085737

RESUMO

The effects of astaxanthin on growth performance, digestive enzyme activity, antioxidant capacity, immune ability, resistance to Vibrio harveyi infection of coral trout (Plectropomus leopardus, initial weight 17.44 ± 0.05 g) were studied by 8-week feeding trial. Four iso-nitrogenous and iso-lipidic experimental diets containing astaxanthin 0 (A0), 0.05 (A1), 0.1 (A2) and 0.2 (A3) g/kg were formulated with the addition of Haematococcus pluvialis powder (astaxanthin content accounts for 100 g/kg) of 0, 0.5, 1.0 and 2.0 g/kg, separately. The feeding experiment lasted for 56 days, and it was found that supplementing the diet with astaxanthin-rich H. pluvialis powder had no significant impact on the growth performance about coral trout (P > 0.05). Compared with the A0 group, the activities of amylase, lipase, and trypsin in the liver of the A2 group was dramatically increased (P < 0.05); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities and total antioxidant capacity (T-AOC) level in serum and liver were dramatically higher in the A2 group before as well as after the challenge (P < 0.05); after the challenge, the acid phosphatase (ACP) and lysozyme (LZ) activities, and complement (C3 and C4) contents in serum and liver were significantly raised for the A2 group (P < 0.05); the liver relative expressions of copper-zinc superoxide dismutase (sod-1), manganese superoxide dismutase (sod-2), cat, acp6, akp, lz-c, immunoglobulin M (igm), c3, and c4-b in the A2 group were significantly up-regulated before and after the challenge (P < 0.05); the rate of survival follow V. harveyi challenge in the group A2 was dramatically higher (P < 0.05). In summary, this study indicated that adding 1.0 g/kg astaxanthin-rich H. pluvialis powder (the content of astaxanthin is 0.091 g/kg) could improve the digestive enzyme activity, antioxidant capacity, immunity, and the ability to resist the challenge of V. harveyi in coral trout.


Assuntos
Antozoários , Antioxidantes , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Imunidade Inata , Truta , Xantofilas
10.
Artigo em Inglês | MEDLINE | ID: mdl-34628157

RESUMO

Glutathione S-transferase (GST) is an important detoxification enzyme in organisms. GSTs play an important role in responding to environmental stresses. This study aimed to identify the GST gene superfamily in silver sillago (Sillago sihama) and analyze its expression pattern under hypoxia stress. A total of 17 GST genes were identified in silver sillago. Phylogenetic analysis showed that the GST gene family contained two subgroups (cytosolic and MAPEGs), and lacked three subgroups (i.e. Pi, Kappa, and MGST2). Phylogenetic and syntenic analysis revealed that GST genes were conserved in evolution. Eight SsGSTs were significantly differentially expressed under hypoxia stress in silver sillago by RNA-seq and qRT-PCR analysis. The expression levels of SsMGST3b, SsGSTO1, SsGSTT1b and SsGSTR2 genes were significantly up-regulated after 4 h of reoxygenation in the gill tissue. In the heart tissue, the expression of SsGSTR3 was significantly up-regulated after 1 h of hypoxia while the expression levels of SsGSTT1b and SsFLAP genes were significantly down-regulated after 4 h of hypoxia. In summary, this study provides for the first time a comprehensive analysis of the GST gene superfamily of silver sillago.


Assuntos
Glutationa Transferase , Perciformes , Animais , Genoma , Glutationa Transferase/genética , Hipóxia/genética , Perciformes/genética , Filogenia
11.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146395

RESUMO

The spotted scat, Scatophagus argus is a member of the family Scatophagidae found in Indo-Pacific coastal waters. It is an emerging commercial aquaculture species, particularly in East and Southeast Asia. In this study, the first chromosome-level genome of S. argus was constructed using PacBio and Hi-C sequencing technologies. The genome is 572.42 Mb, with a scaffold N50 of 24.67 Mb. Using Hi-C data, 563.28 Mb (98.67% of the genome) sequences were anchored and oriented in 24 chromosomes, ranging from 12.57 Mb to 30.38 Mb. The assembly is of high integrity, containing 94.26% conserved single-copy orthologues, based on BUSCO analysis. A total of 24,256 protein-coding genes were predicted in the genome, and 96.30% of the predicted genes were functionally annotated. Evolutionary analysis showed that S. argus diverged from the common ancestor of Japanese puffer (Takifugu rubripes) approximately 114.8 Ma. The chromosomes of S. argus showed significant correlation to T. rubripes chromosomes. A comparative genomic analysis identified 49 unique and 90 expanded gene families. These genomic resources provide a solid foundation for functional genomics studies to decipher the economic traits of this species.


Assuntos
Cromossomos , Genoma , Perciformes/genética , Animais , Aquicultura , Evolução Biológica , Feminino , Família Multigênica
12.
Animals (Basel) ; 11(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802016

RESUMO

Spotted scat (Scatophagus argus) is an economically important marine aquaculture and ornamental fish species in Asia, especially in southeast China. In this study, skin transcriptomes of S. argus were obtained for three types of skin, including black-spotted skin (A), non-spotted skin (B) and caudal fin (C). A total of nine complementary DNA (cDNA) libraries were obtained by Illumina sequencing. Bioinformatics analysis revealed that 1358, 2086 and 487 genes were differentially expressed between A and B, A and C, and B and C, respectively. The results revealed that there were 134 common significantly differentially expressed genes (DEGs) and several key genes related to pigment synthesis and pigmentation, including tyrp1, mitf, pmel, slc7a2, tjp1, hsp70 and mart-1. Of these, some DEGs were associated with pigmentation-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as tyrosine metabolism, melanogenesis, the Wnt signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in S. argus and provide valuable information for skin coloration, especially the formation of spotted patterns on other marine fish species.

13.
Animals (Basel) ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920938

RESUMO

Hong Kong catfish (Clarias fuscus) exhibit sexual dimorphism, particularly in body size. Due to the fast growth rate of males, the sexual size dimorphism of Hong Kong catfish has become an economically important trait. However, limited knowledge is known about the molecular mechanisms of sex determination and sex differentiation in this species. In this study, a first de novo transcriptome sequencing analysis of testes and ovaries was performed to identify sex-biased genes in Hong Kong catfish. The results showed that a total of 290,291 circular consensus sequences (CCSs) were obtained, from which 248,408 full-length non-chimeric (FLNC) reads were generated. After non-redundant analysis, a total of 37,305 unigenes were predicted, in which 34,342 unigenes were annotated with multiple public databases. Comparative transcriptomic analysis identified 5750 testis-biased differentially expressed genes (DEGs) and 6991 ovary-biased DEGs. The enrichment analysis showed that DEGs were classified into 783 Gene Ontology (GO) terms and 16 Kyoto Encyclopedia of Gene and Genome (KEGG) pathways. Many DEGs were involved with sex-related GO terms and KEGG pathways, such as oocyte maturation, androgen secretion, gonadal development and steroid biosynthesis pathways. In addition, the expression levels of 23 unigenes were confirmed to validate the transcriptomic data by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first investigation into the transcriptome of Hong Kong catfish testes and ovaries. This study provides an important molecular basis for the sex determination and sex control breeding of Hong Kong catfish.

14.
Anim Genet ; 52(3): 311-320, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33598959

RESUMO

Chinese perch, Siniperca chuatsi (Basilewsky), is one of the most commercially important cultured fishes in China. In the present study, a high-density genetic linkage map of Chinese perch was constructed by genotyping-by-sequencing technique with an F1 mapping panel containing 190 progenies. A total of 2328 SNPs were assigned to 24 linkage groups (LGs), agreeing with the chromosome haploid number in this species (n = 24). The sex-averaged map covered 97.9% of the Chinese perch genome, with the length of 1694.3 cM and a marker density of 0.7 cM/locus. The number of markers per LG ranged from 57 to 222, with a mean of 97. The length of LGs varied from 43.2 to 108.2 cM, with a mean size of 70.6 cM. The recombination rate of females was 1.5:1, which was higher than that of males. To better understand the distribution pattern of segregation distortion between the two sexes of Chinese perch, the skewed markers were retained and used to reconstruct the sex-specific maps. The 16 segregation distortion regions were identified on 10 LGs of the female map, while 12 segregation distortion regions on eight LGs of the male map. Among these LGs, six LGs matched between the sex-specific maps. This high-density linkage map could provide a solid basis for identifying QTL associated with economically important traits, and for implementing marker-assisted selection breeding of Chinese perch.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Percas/genética , Animais , Mapeamento Cromossômico/veterinária , Feminino , Marcadores Genéticos , Genótipo , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
15.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33367716

RESUMO

Silver sillago, Sillago sihama is a member of the family Sillaginidae and found in all Chinese inshore waters. It is an emerging commercial marine aquaculture species in China. In this study, high-quality chromosome-level reference genome of S. sihama was first constructed using PacBio Sequel sequencing and high-throughput chromosome conformation capture (Hi-C) technique. A total of 66.16 Gb clean reads were generated by PacBio sequencing platforms. The genome-scale was 521.63 Mb with 556 contigs, and 13.54 Mb of contig N50 length. Additionally, Hi-C scaffolding of the genome resulted in 24 chromosomes containing 96.93% of the total assembled sequences. A total of 23,959 protein-coding genes were predicted in the genome, and 96.51% of the genes were functionally annotated in public databases. A total of 71.86 Mb repetitive elements were detected, accounting for 13.78% of the genome. The phylogenetic relationships of silver sillago with other teleosts showed that silver sillago was separated from the common ancestor of Sillago sinica ∼7.92 Ma. Comparative genomic analysis of silver sillago with other teleosts showed that 45 unique and 100 expansion gene families were identified in silver sillago. In this study, the genomic resources provide valuable reference genomes for functional genomics research of silver sillago.


Assuntos
Cromossomos , Peixes/genética , Genoma , Animais , Genômica , Anotação de Sequência Molecular
16.
Artigo em Inglês | MEDLINE | ID: mdl-32798959

RESUMO

Hypoxia can lead to adverse effects on growth, reproduction, behavioral activities and survival in fish, and is one of the most critical factors in the aquatic environment. The liver is an important target organ for reducing toxin accumulation and hypoxia in fish. In this study, silver sillago (Sillago sihama) was exposed to normoxia (dissolved oxygen, DO = 8.0 mg/L), hypoxia for 1 h (hypoxia 1 h, DO = 1.5 mg/L), hypoxia for 4 h (hypoxia 4 h, DO = 1.5 mg/L) and reoxygenation for 4 h after hypoxia 4 h (reoxygenation 4 h, DO = 8.0 mg/L). Results showed that the expression of 506, 1721, and 1230 differentially expressed genes (DEGs) (|log2(fold change) > 1.0| and padj < 0.05) were identified at hypoxia 1 h, hypoxia 4 h, and reoxygenation 4 h in the liver, respectively. The enrichment analysis showed that the DEGs were significantly enriched in metabolic and translation changes pathways, including mapk signaling pathway, p53 signaling pathway, fatty acid metabolism, protein export, ribosome biogenesis in eukaryotes. The DEGs of 17 genes validated the RNA-seq results by quantitative real-time PCR (qRT-PCR). This study provides a comprehensive understanding of the transcriptional changes that occur in different hypoxia and insights into the mechanisms of hypoxia adaptation of the liver in S. sihama.


Assuntos
Proteínas de Peixes/metabolismo , Hipóxia/fisiopatologia , Fígado/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Perciformes/metabolismo , Transcriptoma , Adaptação Fisiológica , Animais , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Fígado/patologia , Perciformes/fisiologia
17.
Fish Physiol Biochem ; 46(5): 1743-1757, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32514853

RESUMO

Gonadotropin-releasing hormone (GnRH) is a key neuropeptide of the reproductive system. However, little is known about the role of GnRH in the spotted scat (Scatophagus argus). Here, three GnRH subtypes (cGnRH-II, sGnRH, and sbGnRH) were identified in the spotted scat. cGnRH-II and sGnRH were only expressed in the brains and gonads of both male and female fish, exhibiting a tissue-specific expression pattern, while sbGnRH was expressed at different transcription levels in all examined tissues. During ovarian maturation, hypothalamus-associated sbGnRH was upregulated, while the expression of sGnRH was variable and cGnRH-II first increased and then decreased. In vivo experiments showed that sbGnRH significantly promoted the expression of fsh and lh genes in a dose-dependent manner and exhibited a desensitization effect on lh expression at high concentrations. For sGnRH and cGnRH-II, only high concentrations could induce fsh and lh expression. Furthermore, treatment with highly concentrated sbGnRH peptide also induced fsh and lh expression, whereas the sGnRH and cGnRH-II peptides only induced fsh expression in vitro. 17ß-Estradiol (E2) significantly inhibited the expression of sbGnRH mRNA in a dose-dependent manner and did not impact sGnRH and cGnRH-II mRNA levels in vivo or in vitro. The inhibitory effect of E2 on sbGnRH expression was attenuated by the estrogen receptor (ER) broad-spectrum antagonist (fulvestrant) and the ERα-specific antagonist (methyl-piperidinopyrazole), respectively, implying that the feedback regulation on sbGnRH is mediated via ERα. This study provides a theoretical basis for the reproductive endocrinology of the spotted scat by studying GnRH.


Assuntos
Estrogênios/metabolismo , Peixes/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar , Estradiol , Feminino , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Hipotálamo , Hormônio Luteinizante/metabolismo , Ovário/crescimento & desenvolvimento , Filogenia , Receptores de Estrogênio/antagonistas & inibidores , Transcriptoma/efeitos dos fármacos
18.
Mol Ecol Resour ; 20(5): 1403-1413, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32521104

RESUMO

The leopard coral grouper, Plectropomus leopardus, belonging to the family Epinephelinae, is a carnivorous coral reef fish widely distributed in tropical and subtropical waters of the Indo-Pacific. Due to its appealing body appearance and delicious taste, P. leopardus has become a popular commercial fish for aquaculture in many countries. However, the lack of genomic and molecular resources for P. leopardus has hindered study of its biology and genomic breeding programmes. Here we report the de novo sequencing and assembly of the P. leopardus genome using a combination of 10 × Genomics, high-throughput chromosome conformation capture (Hi-C) and PacBio long-read sequencing technologies. The genome assembly has a total length of 881.55 Mb with a scaffold N50 of 34.15 Mb, consisting of 24 pseudochromosome scaffolds. busco analysis showed that 97.2% of the conserved single-copy genes were retrieved, indicating the assembly was almost entire. We predicted 25,248 protein-coding genes, among which 96.5% were functionally annotated. Comparative genomic analyses revealed that gene family expansions in P. leopardus were associated with immune-related pathways. In addition, we identified 5,178,453 single nucleotide polymorphisms based on genome resequencing of 54 individuals. The P. leopardus genome and genomic variation data provide valuable genomic resources for studies of its genetics, evolution and biology. In particular, it is expected to benefit the development of genomic breeding programmes in the farming industry.


Assuntos
Bass , Genoma , Animais , Bass/genética , Cromossomos , Hibridização Genômica Comparativa , Recifes de Corais , Oceano Índico , Anotação de Sequência Molecular , Família Multigênica , Oceano Pacífico
19.
Animals (Basel) ; 10(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268576

RESUMO

Silver sillago (Sillago sihama) is a commercially important marine fish species in East Asia. In this study, we compared the transcriptome response to hypoxia stress in the gill tissue of S. sihama. The fish were divided into four groups, such as 1 h of hypoxia (hypoxia1h, DO = 1.5 ± 0.1 mg/L), 4 h of hypoxia (hypoxia4h, DO = 1.5 ± 0.1 mg/L), 4 h of reoxygen (reoxygen4h, DO = 8.0 ± 0.2 mg/L) after 4 h of hypoxia (DO = 1.5 mg/L), and normoxia or control (DO = 8.0 ± 0.2 mg/L) groups. Compared to the normoxia group, a total of 3550 genes were identified as differentially expressed genes (DEGs) (log2foldchange > 1 and padj < 0.05), including 1103, 1451 and 996 genes in hypoxia1h, hypoxia4h and reoxygen4h groups, respectively. Only 247 DEGs were differentially co-expressed in all treatment groups. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEGs were significantly enriched in steroid biosynthesis, biosynthesis of amino acids, glutathione metabolism and metabolism of xenobiotics by cytochrome P450, ferroptosis and drug metabolism-cytochrome P450 pathways. Of these, the cytochrome P450 (CYP) and glutathione S-transferase (GST) gene families were widely expressed. Our study represents the insights into the underlying molecular mechanisms of hypoxia stress.

20.
BMC Genomics ; 21(1): 278, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245399

RESUMO

BACKGROUND: Scatophagus argus is a popular farmed fish in several countries of Southeast Asia, including China. Although S. argus has a highly promising economic value, a significant lag of breeding research severely obstructs the sustainable development of aquaculture industry. As one of the most important economic traits, growth traits are controlled by multiple gene loci called quantitative trait loci (QTLs). It is urgently needed to launch a marker assisted selection (MAS) breeding program to improve growth and other pivotal traits. Thus a high-density genetic linkage map is necessary for the fine mapping of QTLs associated with target traits. RESULTS: Using restriction site-associated DNA sequencing, 6196 single nucleotide polymorphism (SNP) markers were developed from a full-sib mapping population for genetic map construction. A total of 6193 SNPs were grouped into 24 linkage groups (LGs), and the total length reached 2191.65 cM with an average marker interval of 0.35 cM. Comparative genome mapping revealed 23 one-to-one and 1 one-to-two syntenic relationships between S. argus LGs and Larimichthys crocea chromosomes. Based on the high-quality linkage map, a total of 44 QTLs associated with growth-related traits were identified on 11 LGs. Of which, 19 significant QTLs for body weight were detected on 9 LGs, explaining 8.8-19.6% of phenotypic variances. Within genomic regions flanking the SNP markers in QTL intervals, we predicted 15 candidate genes showing potential relationships with growth, such as Hbp1, Vgll4 and Pim3, which merit further functional exploration. CONCLUSIONS: The first SNP genetic map with a fine resolution of 0.35 cM for S. argus has been developed, which shows a high level of syntenic relationship with L. crocea genomes. This map can provide valuable information for future genetic, genomic and evolutionary studies. The QTLs and SNP markers significantly associated with growth-related traits will act as useful tools in gene mapping, map-based cloning and MAS breeding to speed up the genetic improvement in important traits of S. argus. The interesting candidate genes are promising for further investigations and have the potential to provide deeper insights into growth regulation in the future.


Assuntos
Mapeamento Cromossômico/métodos , Peixes/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Mapeamento por Restrição/métodos , Animais , Cruzamento , China , Cromossomos/genética , Pesqueiros , Peixes/genética , Marcadores Genéticos , Genótipo , Fenótipo , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...